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Abstract 

We introduce the definition of generalized Baronti constant ( )XaA ,2  in Banach 
space, analyze some properties of this modulus, and construct the relation 
between this modulus and other geometrical constants, the main result is: If 

( ) ,1,2 aXaA +<  for some [ ],1,0∈a  then Banach space X has uniform normal 
structure. 

1. Introduction 

The properties which can imply metric fixed point theory in a Banach 
space have been studied widely. Some properties of Jordan-von Neumann 
constant and James constant have been shown to imply uniform normal 
structure [2], [4]. 

Baronti et al. [1] defined parameter ( )XA2  to inscribe normal 

structure. In this paper, we consider the generalized constants ( )XaA ,2  
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and give some properties. And discuss the relations through these 
constants. We show that, if ( ) ( )aXaA +< 1,2  for some  [ ],1,0∈a  then 
X possesses uniform normal structure. As an example, we compute 

( ),,2 XaA  for all [ ],2,0∈a  when X is a Hilbert space. 

2. Preliminaries 

Throughout the paper, we let X stand for a Banach space. By XB  and 

,XS  we denote the closed unit ball and the unit sphere of X, respectively. 

We shall say that a nonempty weakly compact convex subset C of X has 
the fixed point property (fpp for short), if every nonexpansive mapping 

CCT →:  has a fixed point (that is, there exits Cx ∈  such that 
( ) xxT = ). Recall that T is nonexpansive, if yxTyTx −≤−  for every 

., Cyx ∈  We shall say that X has the fixed point property (fpp), if every 

weak compact convex subset of X has the fpp. Let A be a nonempty 
bounded set in X. The number ( ) { }AxyxAr Ay ∈−= ∈ :supinf  is 

called the Chebyshev radius of A. The number { :supdiam yxA −=  
}Ayx ∈,  is called the diameter of A. A Banach space X has normal 

structure, if 

( ) ,diam AAr <  (2.1) 

for every bounded convex closed subset A of X with .0diam >A  When 
(1.1) holds for every weakly compact convex subset A of X with 

,0diam >A  we say X has weak normal structure. Normal structure and 
weak normal structure coincide, if X is reflexive. A space X is said to have 
uniform normal structure, if {( ) ( )( )} ,1diaminf >ArA  where the 
infimum is taken over all bounded convex closed subsets A of X with 

.0diam >A  Weak structure, as well as many other properties imply the 
fpp. The relevant papers are [8], [9], [10], and so on. 

The modulus of convexity of X is a function [ ] [ ]2,02,0: →δX  

defined by ( ) { }.,,:21inf ε≥−∈
+

−=εδ yxSyxyx
xX  If ( ) ,01 ≥δX  

then X has uniform normal structure [2], [5]. 
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Definition 2.1 [10]. Let U  be a filter on I, then { }ix  is said to 

convergence x with respect to ,U  denoted by ,lim xxi =U  if for each 

neighborhood V of { } UU.:, ∈∈∈ VxIix i  is called an ultrafilter, if it 
is maximal with respect to the ordering of set inclusion. An ultrafilter is 
called trivial, if it is of the form { }AiIAA ∈⊆ 0,:  for some .0 Ii ∈  

We will use the fact that: if U  is an ultrafilter, then 

(i) for any ,IA ⊆  either ,U∈A  or ;\ U∈AI  

(ii) if { }ix  has a cluster point x, then .lim xxi =U  

Let { }iX  be a family of Banach spaces, and let ( )iXIl ,∞  denote the 

subspace of the product space ,iX∏  equipped with the norm ( ) =ix  

.sup ∞<∈ iIi x  Let U  be an ultrafilter on {( ) ( ) :, ii XIlxNI ∞∈=U  

( ) }.0lim =ixU  The ultraproduct of { } IiiX ∈  is the quotient space 

( ) ., UNXIl i∞  We will use x~  to denote the element of the ultraproduct. 

It follows from property (ii) above and the definition of quotient norm 
that, 

.lim~
ixx

U
=  

In what follows, we will restrict our set I to be N, and let ,, N∈= iXXi  

for some Banach spaces X. For an ultrafilter U  on N, we use X~  denote 

the ultraproduct. It is also clear that X is isometric to subspace of .~X  

Hence, we may assume that X is a subspace of .~X  

Lemma 2.1. If X is a Banach space, then ( ) ( ),~~ ∗∗ = XX  iff X is super-
reflexive. 

3. Main Results 

Definition 3.2. Let X be a Banach space, for ,0≥a  

( )






 ∈≤−

−++
= XBzyxxazyzxyxXaA ,,,:2sup,2  
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 ∈≤−

−++
= XBzyxxazyzxyx ,,,:2sup  

tobelongsoneleastatwhichof .




XS  

First let us show some clear properties of ( ):,2 XaA  

(1) ( ) ( );,0 22 xAXA =  

(2) ( )XaA ,2  is a nondecreasing function with respect to a; 

(3) ( ) [ ];2,0,2,21 2 ∈≤≤+ aXaAa  

(4) If ( ) ,2,2 <XaA  for some ,0≥a  then ( ) 22 <XA  and 
consequently, X is uniformly nonsquare. 

Theorem 3.2. For a Hilbert space ( ) .2,, 2 aHaAH +=  

Proof. Let HBzyx ∈,,  with .xazy ≤−  On one hand, we have 

22

22 zxyxzxyx −++
≤

−++  

2
,22 222 >−<+++

=
zyxzyx  

2
24 zyx −+

≤  

.2 a+≤  

On the other hand, let 1e  and 2e  be orthonormal elements of .HS  Put 

.412,412, 2
2

12
2

11 eaeazeaeayex −+−=−+==  

Thus, we have xazy =−  and .22 azxyx
+=

−++  

Theorem 3.3. For a Banach space ( ) ( )XaCXaAX NJ ,2
,,

2
2 ≤  for all  

[ ).,0 ∞∈a  
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Lemma 3.4 [4]. Let X be a Banach space. For ,20 <≤ a  if NJC  
( ) ,2, =Xa  then there exist sequences { } { } { }nnn zyx ,,  in XB  satisfying: 

(1) ;1,, →nnn zyx  

(2) ;2, →−+ nnnn zxyx  

(3) xazy nn ≤−  for all n. 

Furthermore, the sequences { } { } { }nnn zyx ,,  can be chosen from .XS  

Corollary 3.5. For a Banach space ( ) ,2,, 2 =XaAX  if and only if 

( ) 2, =XaCNJ  for all [ ].2,0∈a   

Proof. If ( ) ,2, =XaCNJ  then by lemma, there exist sequences 
{ } { },, nn yx  and { }nz  in XS  satisfying ,2, →−+ nnnn zxyx  and 

azy nn ≤−  for all n. Thus, ( ) .2,2 =XaA  The other direction is an 

easy consequence of proposition. 

Corollary 3.6. For a Banach space ( ) ,2,, =XaJX  if and only if 
( ) .2,2 =XaA  

Corollary 3.7. Let X be a Banach space. If ( ) 2,1 <XJ  or ( )XaA ,2  

,2<  then X has uniform normal structure. 

Proposition 3.1. For ( ) ( ) .2,2,,0 22
bXaAaXbAba +≤+≤≤  In 

particular, ( )XA ,2 ⋅  is continuous on [ ).,0 ∞  

Proof. Let .0>ε  There exist XBzyx ∈,,  such that ,1 xbzy =−  

and ( ) 12 .2, bzxyxXbA −++
≤ε−  can be chosen so that .1ba <  

Otherwise, the assertion is obviously true. We can choose XByz ∈11,  

such that ,2, 11
abzzyy −≤−−  and .11 xazy ≤−  Then, we have 

( ) 2,2
zxyxXbA −++

≤ε−  
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2
1111 zzzxyyyx −+−+−++

≤  

22
11 abzxyx −+

−++
≤  

( ) .2,2
abXaA −+≤  

To finish the proof, we let .0→ε  

Lemma 3.8. Uniformly nonsquare Banach spaces are super-reflexive. 

Corollary 3.9. ( ) ( ).~,, 22 XaAXaA =  

Proof. Clearly, ( ) 22 , AXaA ≤  ( ).~, Xa  To show ( ) ( ),~,, 22 XaAXaA ≥  

let [ ]a,0,0 ∈α>δ  and suppose Xzyx ~~,~,~ ∈  and .~~~ xzy α=−  If 

,0~ =x  then ( ).,1~
2

~~
2 XaAyzy

≤≤=
+  If ,0~ ≠x  choose 0>ε  such 

that .~xδ<ε  Since 

,lim:2lim2
~~~~

: nU
nnnn

U
czxyxzxyxc =

−++
=

−++
=  

the set { δ<−∈ ccNn n:  and ( ) }nnnn xaxzy δ+<ε+α≤−  
belongs to U.  

In particular, 

( ) δ+δ+≤δ+
−++

< XaAzxyxc nnnn ,2 2  for some n. 

Then, the inequality ( ) ( )XaAXaA ~,, 22 ≥  follows from the arbitrariness 
of δ  and the continuity of ( ).,2 XA ⋅  

Lemma 3.10. Let X be a Banach space without weak normal 
structure, then for any 10 <ε<  and each ,10 ≤≤ t  there exist 

XX tSxxSx ∈∈ 321 ,,  satisfying: 

(1) 132 axxx =−  with ;ε<− ta  

(2) ( ) ( ) ( ) .31,31 3121 ε−+>−+ε−+>+ txxtxx  
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Theorem 3.11. Let X be a Banach space. If ( ) ,1,2 aXaA +<  for 

some [ ],1,0∈a  then X has uniform normal structure. 

 Proof. It suffices to show that these conditions imply X has normal 
structure. For the case ( ) [ ],1,0,1,2 ∈+< aaXaA  and Remark 3.1, X is 
uniformly nonsquare and so in turn is reflexive. Thus normal structure 
and weak normal structure coincide, it suffices to prove that X has weak 
normal structure. By the continuity of ( ) ( ) ,1,,, 22 aXaAXA +<′⋅  for 

some .aa >′  Choose Nm ∈  such that .1 ama ′≤+  Suppose X does 

not have weak normal structure, by lemma, there exist 
XnnXn aSzySx ∈∈ ,,  such that, for each nnnn xazyNn =−∈ ,  with 

( ) ( ) .31,31,1
mntzxmnayxmnaa nnnnn +

−+>−
+

−+>+
+

<−  

amnaazy nnn ′≤
+

+<=− 1  and ,1inflim ayx nnn +≥+∞→  and 

.1inflim azx nnn +≥−∞→  Thus, 

( ) .1,2inflim1 2 aXaAzxyxa nnnn
n

+<′≤
−++

≤+
∞→

 

This contradiction shows that X must have weak normal structure. 

Corollary 3.12. Let X be a Banach space. If ( ) ,2,12 <XA  then X has 

uniform normal structure. 

Theorem 3.13. Let X be a Banach space, [ ],2,0∈ε  and .0≥β  If 

( ) ,2
2,2

β−ε+
≤XaA  then ( ) .0≥εδX  

Proof. Suppose ( ) ,0=εδX  there exist ,, Xnn Syx ∈  such that 
ε=− nn yx  for all ,Nn ∈  and .2inflim =+∞→ nnn yx  Put nn yz =  

.nxβ−  Then, for each ,1,, β+≤β−=β=−∈ nnnnnn xyzxzyNn  
and .β−ε=β−−≥− nnnnn xyxzx  Thus, 

.2
2

2inflim2
2 β−ε+

<
−++

≤
β−ε+

∞→
nnnn

n
zxyx  

We obtain a contradiction. 
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Corollary 3.14. If ( ) ,21,02
ε+<XA  then ( ) .0≥εδX  

Corollary 3.15. If ( )XA ,2 ⋅  is concave and ( ) <XaA ,2  

( )
2

3313 a−++  for some [ ],1,0∈a  then X has uniform normal 

structure. 

Proof. If ( ) ,2,12 <XA  we are done by Corollary 3.5. Let 
( ) 2,12 =XA  and suppose that X does not have uniform normal 

structure. Therefore, ( ) .2
31,02

+≥XA  By the concavity of ( ),,2 XA ⋅  

we have, for all [ ]1,0∈a  

( ) ( ) ( ) ( ) ( ) ,2
3313,1,01, 222

aXaAXAaXaA −++
≥+−≥  

a contradiction. 

Example 3.16 ( )norm1ll −∞ . Let 2RX =  be equipped with the norm 
defined by 





≤
≥

= ∞
.0if
,0if

211

21
xxx
xxx

x  

Take ( ) ( ) ( ).0,1and1,0,1,1 −=== zyx  Then, we have ( ) xzy ==− 1,1  
and ( ) ( ) .21,2,22,1 ==−==+ ∞∞ zxyx  So, 

( ) ( ) .2,122222 2 ≤≤
−++

=+= XAzxyx  

Hence, ( ) .2,12 =XA  
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