GENERALIZED BARONTI CONSTANT AND NORMAL STRUCTURE

HONGLIANG ZUO and MIN YANG

Department of Mathematics and Information Science Henan Normal University Xinxiang Henan 453007 P. R. China e-mail: zuodke@yahoo.com

Abstract

We introduce the definition of generalized Baronti constant $A_2(a, X)$ in Banach space, analyze some properties of this modulus, and construct the relation between this modulus and other geometrical constants, the main result is: If $A_2(a, X) < 1 + a$, for some $a \in [0, 1]$, then Banach space X has uniform normal structure.

1. Introduction

The properties which can imply metric fixed point theory in a Banach space have been studied widely. Some properties of Jordan-von Neumann constant and James constant have been shown to imply uniform normal structure [2], [4].

Baronti et al. [1] defined parameter $A_2(X)$ to inscribe normal structure. In this paper, we consider the generalized constants $A_2(a, X)$ 2010 Mathematics Subject Classification: 46B20.

Keywords and phrases: generalized Baronti constant, uniformly non-square, normal structure.

The research of the work was partially supported by the National Natural Science Funds (10726073).

Received September 30, 2009

© 2010 Scientific Advances Publishers

and give some properties. And discuss the relations through these constants. We show that, if $A_2(a, X) < (1 + a)$ for some $a \in [0, 1]$, then X possesses uniform normal structure. As an example, we compute $A_2(a, X)$, for all $a \in [0, 2]$, when X is a Hilbert space.

2. Preliminaries

Throughout the paper, we let X stand for a Banach space. By B_X and S_X , we denote the closed unit ball and the unit sphere of X, respectively. We shall say that a nonempty weakly compact convex subset C of X has the fixed point property (fpp for short), if every nonexpansive mapping $T: C \to C$ has a fixed point (that is, there exits $x \in C$ such that T(x) = x). Recall that T is nonexpansive, if $||Tx - Ty|| \leq ||x - y||$ for every $x, y \in C$. We shall say that X has the fixed point property (fpp), if every weak compact convex subset of X has the fixed point property (fpp), if every bounded set in X. The number $r(A) = \inf\{\sup_{y \in A} ||x - y|| : x \in A\}$ is called the *Chebyshev radius* of A. The number diam $A = \sup\{||x - y|| : x, y \in A\}$ is called the *diameter* of A. A Banach space X has normal structure, if

$$r(A) < \operatorname{diam} A,\tag{2.1}$$

for every bounded convex closed subset A of X with diam A > 0. When (1.1) holds for every weakly compact convex subset A of X with diam A > 0, we say X has weak normal structure. Normal structure and weak normal structure coincide, if X is reflexive. A space X is said to have uniform normal structure, if $\inf\{(\operatorname{diam} A) / (r(A))\} > 1$, where the infimum is taken over all bounded convex closed subsets A of X with diam A > 0. Weak structure, as well as many other properties imply the fpp. The relevant papers are [8], [9], [10], and so on.

The modulus of convexity of X is a function $\delta_X : [0, 2] \rightarrow [0, 2]$ defined by $\delta_X(\varepsilon) = \inf\{1 - \frac{\|x + y\|}{2} : x, y \in S_x, \|x - y\| \ge \varepsilon\}$. If $\delta_X(1) \ge 0$, then X has uniform normal structure [2], [5]. **Definition 2.1** [10]. Let \mathcal{U} be a filter on I, then $\{x_i\}$ is said to convergence x with respect to \mathcal{U} , denoted by $\lim_{\mathcal{U}} x_i = x$, if for each neighborhood V of x, $\{i \in I : x_i \in V\} \in \mathcal{U}$. \mathcal{U} is called an ultrafilter, if it is maximal with respect to the ordering of set inclusion. An ultrafilter is called trivial, if it is of the form $\{A : A \subseteq I, i_0 \in A\}$ for some $i_0 \in I$.

We will use the fact that: if \mathcal{U} is an ultrafilter, then

- (i) for any $A \subseteq I$, either $A \in \mathcal{U}$, or $I \setminus A \in \mathcal{U}$;
- (ii) if $\{x_i\}$ has a cluster point *x*, then $\lim_{\mathcal{U}} x_i = x$.

Let $\{X_i\}$ be a family of Banach spaces, and let $l_{\infty}(I, X_i)$ denote the subspace of the product space $\prod X_i$, equipped with the norm $||(x_i)|| =$ $\sup_{i \in I} ||x_i|| < \infty$. Let \mathcal{U} be an ultrafilter on $I N_{\mathcal{U}} = \{(x_i) \in l_{\infty}(I, X_i) :$ $\lim_{\mathcal{U}} ||(x_i)|| = 0\}$. The ultraproduct of $\{X_i\}_{i \in I}$ is the quotient space $l_{\infty}(I, X_i) / N_{\mathcal{U}}$. We will use \tilde{x} to denote the element of the ultraproduct. It follows from property (ii) above and the definition of quotient norm that,

$$\|\widetilde{x}\| = \lim_{\mathcal{U}} \|x_i\|.$$

In what follows, we will restrict our set I to be N, and let $X_i = X$, $i \in N$, for some Banach spaces X. For an ultrafilter \mathcal{U} on N, we use \widetilde{X} denote the ultraproduct. It is also clear that X is isometric to subspace of \widetilde{X} . Hence, we may assume that X is a subspace of \widetilde{X} .

Lemma 2.1. If X is a Banach space, then $(\widetilde{X})^* = (\widetilde{X}^*)$, iff X is superreflexive.

3. Main Results

Definition 3.2. Let *X* be a Banach space, for $a \ge 0$,

$$A_2(a, X) = \sup \left\{ \frac{\|x + y\| + \|x - z\|}{2} : \|y - z\| \le a \|x\|, x, y, z \in B_X \right\}$$

$$= \sup \left\{ \frac{\|x + y\| + \|x - z\|}{2} : \|y - z\| \le a \|x\|, x, y, z \in B_X \right\}$$

of which at least one belongs to S_X .

First let us show some clear properties of $A_2(a, X)$:

- (1) $A_2(0, X) = A_2(x);$
- (2) $A_2(a, X)$ is a nondecreasing function with respect to a;
- (3) $1 + \frac{a}{2} \le A_2(a, X) \le 2, a \in [0, 2];$

(4) If $A_2(a, X) < 2$, for some $a \ge 0$, then $A_2(X) < 2$ and consequently, X is uniformly nonsquare.

Theorem 3.2. For a Hilbert space H, $A_2(a, H) = \sqrt{2 + a}$.

Proof. Let $x, y, z \in B_H$ with $||y - z|| \le a ||x||$. On one hand, we have

$$\frac{\|x+y\|+\|x-z\|}{2} \le \sqrt{\frac{\|x+y\|^2+\|x-z\|^2}{2}}$$
$$= \sqrt{\frac{2\|x\|^2+\|y\|^2+\|z\|^2+2 < x, \ y-z >}{2}}$$
$$\le \sqrt{\frac{4+2\|x\|\|y-z\|}{2}}$$
$$\le \sqrt{2+a}.$$

On the other hand, let e_1 and e_2 be orthonormal elements of S_H . Put

$$x = e_1, \ y = \frac{a}{2}e_1 + \sqrt{1 - \frac{a^2}{4}}e_2, \ z = -\frac{a}{2}e_1 + \sqrt{1 - \frac{a^2}{4}}e_2$$

•

Thus, we have ||y - z|| = a||x|| and $\frac{||x + y|| + ||x - z||}{2} = \sqrt{2 + a}$.

Theorem 3.3. For a Banach space X, $\frac{A_2(a, X)^2}{2} \leq C_{NJ}(a, X)$ for all $a \in [0, \infty)$.

Lemma 3.4 [4]. Let X be a Banach space. For $0 \le a < 2$, if C_{NJ} (a, X) = 2, then there exist sequences $\{x_n\}, \{y_n\}, \{z_n\}$ in B_X satisfying:

- (1) $||x_n||, ||y_n||, ||z_n|| \to 1;$
- (2) $||x_n + y_n||, ||x_n z_n|| \to 2;$
- (3) $||y_n z_n|| \le a ||x||$ for all *n*.

Furthermore, the sequences $\{x_n\}, \{y_n\}, \{z_n\}$ can be chosen from S_X .

Corollary 3.5. For a Banach space $X, A_2(a, X) = 2$, if and only if $C_{NJ}(a, X) = 2$ for all $a \in [0, 2]$.

Proof. If $C_{NJ}(a, X) = 2$, then by lemma, there exist sequences $\{x_n\}, \{y_n\}$, and $\{z_n\}$ in S_X satisfying $||x_n + y_n||, ||x_n - z_n|| \to 2$, and $||y_n - z_n|| \le a$ for all *n*. Thus, $A_2(a, X) = 2$. The other direction is an easy consequence of proposition.

Corollary 3.6. For a Banach space X, J(a, X) = 2, if and only if $A_2(a, X) = 2$.

Corollary 3.7. Let X be a Banach space. If J(1, X) < 2 or $A_2(a, X) < 2$, then X has uniform normal structure.

Proposition 3.1. For $0 \le a \le b$, $A_2(b, X) + \frac{a}{2} \le A_2(a, X) + \frac{b}{2}$. In particular, $A_2(\cdot, X)$ is continuous on $[0, \infty)$.

Proof. Let $\varepsilon > 0$. There exist $x, y, z \in B_X$ such that $||y - z|| = b_1 ||x||$, and $A_2(b, X) - \varepsilon \leq \frac{||x + y|| + ||x - z||}{2}$. b_1 can be chosen so that $a < b_1$. Otherwise, the assertion is obviously true. We can choose $z_1, y_1 \in B_X$ such that $||y - y_1||, ||z - z_1|| \leq \frac{b-a}{2}$, and $||y_1 - z_1|| \leq a ||x||$. Then, we have

$$A_2(b, X) - \varepsilon \le \frac{\|x + y\| + \|x - z\|}{2}$$

$$\leq \frac{\|x + y_1\| + \|y - y_1\| + \|x - z_1\| + \|z - z_1\|}{2}$$

$$\leq \frac{\|x + y_1\| + \|x - z_1\|}{2} + \frac{b - a}{2}$$

$$\leq A_2(a, X) + \frac{b - a}{2}.$$

To finish the proof, we let $\varepsilon \to 0$.

Lemma 3.8. Uniformly nonsquare Banach spaces are super-reflexive.

Corollary 3.9. $A_2(a, X) = A_2(a, \widetilde{X}).$

Proof. Clearly, $A_2(a, X) \leq A_2(a, \widetilde{X})$. To show $A_2(a, X) \geq A_2(a, \widetilde{X})$, let $\delta > 0, \alpha \in [0, a]$ and suppose $\widetilde{x}, \widetilde{y}, \widetilde{z} \in \widetilde{X}$ and $\|\widetilde{y} - \widetilde{z}\| = \alpha \|\widetilde{x}\|$. If $\widetilde{x} = 0$, then $\frac{\|\widetilde{y}\| + \|\widetilde{z}\|}{2} = \|\widetilde{y}\| \leq 1 \leq A_2(a, X)$. If $\widetilde{x} \neq 0$, choose $\varepsilon > 0$ such that $\varepsilon < \delta \|\widetilde{x}\|$. Since

$$c \coloneqq \frac{\|\widetilde{x} + \widetilde{y}\| + \|\widetilde{x} - \widetilde{z}\|}{2} = \lim_{U} \frac{\|x_n + y_n\| + \|x_n - z_n\|}{2} \coloneqq \lim_{U} c_n$$

the set $\{n \in N : |c_n - c| < \delta \text{ and } \|y_n - z_n\| \le \alpha \|x_n\| + \varepsilon < (a + \delta) \|x_n\|\}$ belongs to U.

In particular,

$$c < \frac{\|x_n + y_n\| + \|x_n - z_n\|}{2} + \delta \le A_2(a + \delta, X) + \delta \text{ for some } n.$$

Then, the inequality $A_2(a, X) \ge A_2(a, \widetilde{X})$ follows from the arbitrariness of δ and the continuity of $A_2(\cdot, X)$.

Lemma 3.10. Let X be a Banach space without weak normal structure, then for any $0 < \varepsilon < 1$ and each $0 \le t \le 1$, there exist $x_1 \in S_X$, x_2 , $x_3 \in tS_X$ satisfying:

(1)
$$x_2 - x_3 = ax_1$$
 with $|a - t| < \varepsilon$;

(2) $||x_1 + x_2|| > (1 + t) - 3\varepsilon$, $||x_1 + (-x_3)|| > (1 + t) - 3\varepsilon$.

Theorem 3.11. Let X be a Banach space. If $A_2(a, X) < 1 + a$, for some $a \in [0, 1]$, then X has uniform normal structure.

Proof. It suffices to show that these conditions imply X has normal structure. For the case $A_2(a, X) < 1 + a$, $a \in [0, 1]$, and Remark 3.1, X is uniformly nonsquare and so in turn is reflexive. Thus normal structure and weak normal structure coincide, it suffices to prove that X has weak normal structure. By the continuity of $A_2(\cdot, X)$, $A_2(a', X) < 1 + a$, for some a' > a. Choose $m \in N$ such that $a + \frac{1}{m} \leq a'$. Suppose X does not have weak normal structure, by lemma, there exist $x_n \in S_X$, y_n , $z_n \in aS_X$ such that, for each $n \in N$, $y_n - z_n = a_n x_n$ with $|a_n - a| < \frac{1}{n+m}$, $||x_n + y_n|| > (1 + a) - \frac{3}{n+m}$, $||x_n - z_n|| > (1 + t) - \frac{3}{n+m}$. $||y_n - z_n|| = a_n < a + \frac{1}{n+m} \leq a'$ and $\liminf_{n \to \infty} ||x_n + y_n|| \geq 1 + a$, and $\liminf_{n \to \infty} ||x_n - z_n|| \geq 1 + a$. Thus,

$$1 + a \leq \liminf_{n \to \infty} \frac{\|x_n + y_n\| + \|x_n - z_n\|}{2} \leq A_2(a', X) < 1 + a.$$

This contradiction shows that *X* must have weak normal structure.

Corollary 3.12. Let X be a Banach space. If $A_2(1, X) < 2$, then X has uniform normal structure.

Theorem 3.13. Let X be a Banach space, $\varepsilon \in [0, 2]$, and $\beta \ge 0$. If $A_2(a, X) \le \frac{2 + |\varepsilon - \beta|}{2}$, then $\delta_X(\varepsilon) \ge 0$.

Proof. Suppose $\delta_X(\varepsilon) = 0$, there exist $x_n, y_n \in S_X$, such that $||x_n - y_n|| = \varepsilon$ for all $n \in N$, and $\liminf_{n \to \infty} ||x_n + y_n|| = 2$. Put $z_n = y_n -\beta x_n$. Then, for each $n \in N$, $y_n - z_n = \beta x_n$, $||z_n|| = ||y_n - \beta x_n|| \le 1 + \beta$, and $||x_n - z_n|| \ge ||x_n - y_n|| - ||\beta x_n|| = |\varepsilon - \beta|$. Thus,

$$\frac{2+|\boldsymbol{\varepsilon}-\boldsymbol{\beta}|}{2} \leq \liminf_{n \to \infty} \frac{\|\boldsymbol{x}_n + \boldsymbol{y}_n\| + \|\boldsymbol{x}_n - \boldsymbol{z}_n\|}{2} < \frac{2+|\boldsymbol{\varepsilon}-\boldsymbol{\beta}|}{2}$$

We obtain a contradiction.

Corollary 3.14. If $A_2(0, X) < 1 + \frac{\varepsilon}{2}$, then $\delta_X(\varepsilon) \ge 0$.

Corollary 3.15. If $A_2(\cdot, X)$ is concave and $A_2(a, X) < \frac{\sqrt{3} + 1 + (3 - \sqrt{3})a}{2}$ for some $a \in [0, 1]$, then X has uniform normal structure.

Proof. If $A_2(1, X) < 2$, we are done by Corollary 3.5. Let $A_2(1, X) = 2$ and suppose that X does not have uniform normal structure. Therefore, $A_2(0, X) \ge \frac{1+\sqrt{3}}{2}$. By the concavity of $A_2(\cdot, X)$, we have, for all $a \in [0, 1]$

$$A_2(a, X) \ge (1-a)A_2(0, X) + aA_2(1, X) \ge \frac{\sqrt{3} + 1 + (3-\sqrt{3})a}{2},$$

a contradiction.

Example 3.16 $(l_{\infty} - l_1 \text{norm})$. Let $X = R^2$ be equipped with the norm defined by

$$\|x\| = \begin{cases} \|x\|_{\infty} & \text{if } x_1x_2 \ge 0, \\ \|x\|_1 & \text{if } x_1x_2 \le 0. \end{cases}$$

Take x = (1, 1), y = (0, 1) and z = (-1, 0). Then, we have y - z = (1, 1) = xand $||x + y|| = ||(1, 2)||_{\infty} = 2$, $||x - z|| = ||(2, 1)||_{\infty} = 2$. So,

$$2 = (2+2)/2 = \frac{\|x+y\| + \|x-z\|}{2} \le A_2(1, X) \le 2.$$

Hence, $A_2(1, X) = 2$.

References

- M. Baronti, E. Casini and P. L. Papini, Triangles inscribed in a semicircle, in Minkowski planes, and in normed spaces, J. Math. Anal. Appl. 252 (2000), 124-146.
- [2] M. M. Day, Some characterizations of inner product spaces, Trans. Amer. Math. Soc. 62 (1947), 320-337.
- [3] S. Dhompongsa, P. Piraisangjun and S. Saejung, Generalized Jordan-von Neumann constants and uniform normal structure, Bull. Austral. Math. Soc. 67 (2003), 225-240.

- [4] S. Dhompongsa, A. Kaewkhao and S. Tasena, On a generalized James constant, J. Math. Anal. Appl. 285 (2003), 419-435.
- [5] T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976), 121-155.
- [6] J. Gao and K. S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991), 41-56.
- [7] J. Gao, Modulus of convexity in Banach spaces, J. Appl. Math. Lett. 16 (2003), 273-278.
- [8] J. Garcia-Falset and B. Sims, Property (M) and the weak fixed point property, Proc. Amer. Math. Soc. 125 (1997), 2891-2896.
- [9] J. Garcia-Falset, The fixed point property in Banach spaces with NUS-property, J. Math. Anal. Appl. 215 (1997), 532-542.
- [10] B. Sims, A class of spaces with weak normal structure, Bull. Austral. Math. Soc. 49 (1994), 523-528.
- [11] C. Yang and F. Wang, On a generality modulus of convexity, Journal of Henan Normal University 3(1) (2006), 55.